1860.0002

INTERMOUNTAIN POWER SERVICE CORPORATION

April 29, 2005

Richard Sprott, Director Division of Air Quality Department of Environmental Quality P.O. Box 144820 Salt Lake City, UT 84114-4820

Attention: Jesse McDonald, Compliance Section

Dear Director Sprott:

IPSC PSD Compliance Report

The Intermountain Power Service Corporation (IPSC) is herein providing information to show compliance with federally enforceable limits set as conditions within our applicable Title V operating permits and approval orders (AO). This report is required by the following conditions that were effective during the reporting period:

Title V Operating Permit #2700010002 (8/8/2003), Conditions II.B.2.f & II.B.2.g

AO DAQE-AN0327009-04, Condition 25

These conditions require IPSC to show that there were no significant emission increases of pollutants regulated under Prevention of Significant Deterioration (PSD) rules that were attributable to modifications performed by IPSC. The specific PSD requirement implemented by these permits is promulgated as the "WEPCO" rule (40CFR52.21), which requires comparisons of emissions before and after source modifications.

Compliance Provisions

In order to avoid PSD major modification permitting, a modification can not result in significant emission increases. Under the WEPCO rule, modifications can be permitted as minor if the permittee can represent projections that, all other things equal, post modification actual emissions are predicted to be less than significant increases from the actual emissions prior to the proposed change. IPSC followed this requirement when obtaining the approval to make the permitted modifications.

To show compliance with the WEPCO rule after the modifications have occurred, IPSC must compare two year actual emissions prior to the modification to actual emissions after the modification. If a significant increase in any PSD pollutant emission attributable to the

modification is shown to have occurred, IPSC must then undergo full a PSD major modification process for that pollutant.

WEPCO allows the source to discount those emission increases not attributable to the modification. PSD provisions prevent using decreases when no netting is performed in permitting, as was the case in this particular permitting action. The permitted modifications affecting emissions at IGS are tied to increased heat input for higher generating capacity. Any emission increases not associated with the change can be excluded from the pre- and post-change emission comparison. These excluded emissions can be from non-modification related parameters such as demand growth, changes in fuel quality, operational variability in overall pollution control efficiency, operating hours, or those emissions that could have been otherwise accommodated during the baseline period. None of the modifications were non-routine replacements to accommodate forced outages. Accordingly, IPSC is not prevented to use changes in hours of operation to exclude emissions from either unit at IGS. (See the EPA policy determination letter to Henry V Nickel on Detroit Edison, 5/23/00.)

WEPCO Compliance Analysis

Presented in the table below are the pollutant-by-pollutant compliance determinations as required by permit and the WEPCO rule. The calculations used take into consideration the ability to adjust and discount actual emissions by subtracting emission increases from operational differences not attributable to the modifications. These include adjustments for coal quality, control technology variability, hours of operation, or those emissions that could have been otherwise accommodated during the baseline period. For purposes of the permitting modifications tied to the IGS Dense Pack Project, the positive reducing effects from the use of over fire air must be added back onto the actual compliance period emissions. Since NOx is the only pollutant beneficially affected by over-fire air (OFA), the adjustments for OFA apply only to it. This table clearly shows that the WEPCO test has been met for all PSD pollutants at IGS.

TABLE 1 - WEPCO Emission Test - IGS

<u>Pollutant</u>	Baseline Emissions (3/1/2000- 2/28/2002	Post change Emissions (4/2004-3/2005)	Difference increase / (decrease)	<u>PSD</u> Significance
Nitrogen Oxides (w/OFA)	26,537	22,440	(4,097)	40
Nitrogen Oxides (w/o OFA)	26,537	24,718	(1,818)	40
Sulfur Dioxide	3,856	3,453	(403)	40
PM (Stack)	282	235	(47)	25
PM10 (Stack)	260	217	(43)	15
Ozone (VOCs)	12.0	13.5	1.4	40
Lead	0.08	0.07	(0.02)	0.6
Beryllium	0.00087	0.00075	(0.00012)	0.0004
Mercury	0.080	0.088	0.008	0.1

Flourides	10.6	11.8	1.2	3
Sulfuric Acid	8.1	8.8	0.7	7
Other sulfur compounds	63.5	68.3	4.8	10

NOTE: Values are in tons, and have been adjusted to disallow OFA benefits and to exclude emissions not attributable to the modifications. These represent those PSD pollutants reasonably expected to be emitted by IGS. Other sulfur compounds include total reduced sulfur and reduced sulfur compounds (TRS/RSC).

Fuel Quality and Control Variability

Variability in coal characteristics have an ultimate impact on emissions. Fuel parameters such as sulfur, nitrogen, volatiles, ash content, and trace metal concentrations influence the rate and form of the respective emitted counterparts. The loading also has an impact on the performance of applicable pollution control devices. For instance, higher loading of inlet sulfur compounds to the wet limestone scrubbers cause a concomitant decrease in overall efficiency when operating at capacity. IPSC has developed from baseline data the relationship of how changes in fuel quality affects emissions, particularly for NOx and SO2.

The way IPSC is calculating excluded emissions is based upon the actual operating data from the baseline period. IPSC has developed curve relationships between coal quality and control device response and changes in actual emissions. In practice, IPSC back calculates, based on this relationship, what the emissions for a given pollutant would have been had that particular fuel been used during the baseline period. Operating parameters from the baseline period, such as heat input, are used to make this calculation to ensure it is distinct from emissions that could be attributable to the modification. The difference from what could have been accommodated during the baseline period if this fuel was used and the actual baseline emission rate are those emissions not related to the change, and are therefore excluded, and thus deductible from any emission increase.

Hours of Operation

Nothing in either the Dense Pack Project or the OFA addition affected the forced outage rate for either IGS Units 1 or 2. IPSC has no history of forced outages due to any modifications made in either permitted action. Thus, variability in year to year operating hours is utilized to compare directly that no significant emissions increase from the modifications occurred. As WEPCO dictates, even though the ultimate test is in tons per year comparisons, emissions are reduced to lbs per hour rates, and then calculated back to tons per year using equal hours of operation. This provides a direct measurement indicating any attributable emission increases.

Discounted OFA Control

For purposes of showing WEPCO compliance for the Dense Pack Project, IPSC must discount the beneficial NOx control aspects of the overfire air system. That is, emission decreases provided by OFA must be added back to the actual emissions to show that the Dense Pack Project itself did not cause as significant emissions increase of any pollutant. IPSC has substantial operational data to predict the effect of OFA at modified capacities.

WEPCO Methodology

To show consistency in year to year reporting, IPSC is providing an overview of formulae, bases for calculations, and sources of data in the attached spreadsheets. Outlined in them are descriptions of those components used for calculating WEPCO compliance on a plant wide basis as well as unit by unit..

Conclusion

IPSC has shown that no significant increase has occurred for any pollutant as a result of modifications at IGS. This completes the report for showing compliance with PSD determinations for the IGS Dense Pack modifications. All supporting documentation upon which this compliance report is based is available for review at the IGS site as required by rule and permit.

If you have any questions or clarifications, please contact Mr. Dennis Killian, Superintendent of technical Services and (435) 864-4414, or <u>dennis-k@ipsc.com</u>.

In as much as this notice of intent may affect our Title V Operating Permit, I hereby certify that, based on information and belief formed after reasonable inquiry, the statements and information in this document are true, accurate, and complete.

Sincerely,

George W. Cross

Along W. Cross

President & Chief Operations Officer, and Title V Responsible Official

BP/RJC/co

Enclosure: Computational Spreadsheets

cc: Blaine Ipson, IPSC

James Holtkamp, Holland & Hart

Bruce Harvey, LADWP

Intermountain Generating Station WEPCO Computational Analysis

For the reporting period April 2004 - March 2005

WEPCO COMPLIANCE SUMMARY

(12 month rolling total emission)
For the Period ending:

March-2005

<u>Pollutant</u>	WEPCO Trigger		UNIT ONE	
(PSD)	(tons)	Adj. Baseline	Adj. Emissions	WEPCO Met? (Y/N)
NOx (w/OFA)	40	13341	11880	Y
NOx (w/o OFA -)	p 40	13341	12468	Υ
SOx	40	1860	1523	Υ
PM (stack)	25	176	119	Υ
PM _{10 (Stack)}	15	162	110	Υ
VOC (ozone)	40	5.9	6.6	Υ
Lead	0.6	0.05	0.03	Υ
Beryllium	0.0004	0.00056	0.00033	Y
Mercury	0.1	0.039	0.043	Y
Flourides	3	5.2	5.8	Y
Sulfuric Acid	7	4.0	4.3	Y
TRS/RSC	10	31.2	33.6	Y

	UNIT TWO	
Adj. Baseline	Adj. Emissions	WEPCO Met? (Y/N)
13196	10560	Y
13196	12250	Y
1996	1930	Υ
106	116	Y
98	107	Y
6.1	6.8	Y
0.03	0.04	Υ
0.00031	0.00042	Y
0.041	0.045	Υ
5.4	6.0	Υ
4.1	4.5	Y
32.3	34.7	Y

	_				_			_			_	
Mar-05	Feb-05	Jan-05	Dec-04	Nov-04	Oct-04	Sep-04	Aug-04	Jul-04	Jun-04	May-04	Apr-04	
										•		1000年
11,078	11,186	10,959	10,752	10,893	11,332	11,484	11,643	11,760	12,004	11,952	11,762	Fu 19 (94) 1,857 1,857 1,857 1,585 1,584 4,193 3,254 4,193 3,254 4,193 1,206 1,504 1,5
												1000 1000 1000 1000 1000 1000 1000 100
19,336	19,314	19,316	19,352	19,159	19,198	19,218	19,243	19,207	19,368	19,322	19,387	
7	7.	7.	7.	7.	7.	7.	7.	7.	7.	7.	7.	SSSUPW 0.7
7.20	7.18	7.18	7.19	7.18	7.17	.18	.12	.17	.14	.19	7.19	
11.48	11.72	12.08	12.39	12.45	12.45	11.56	10.73	10.45	10.02	10.36	10.31	
												Operating House, 1592.5 733.3 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 744.0 720.0 720.0 744.0 720.0 720.0 744.0 720.0
0.59	0.62	0.61	0.53	0.54	0.66	0.61	0.58	0.53	0.51	0.55	0.53	
0.27	0.20	0.21	0.34	0.21	0.24	0.5	0.	0.29	0.23	0.26	0.29	Heat Simple Heat S
27	20	21	34	21	24	22	26	29	23	26	29	Milet Tipig Milet Suffur 0.82 1896,9 0.82 2489,7 0.83 2489,7 0.95 2854,6 0.95 2854,6 0.94 2784,8 0.92 2850,3 1.01 2928,7 0.91 2670,9 0.91 2670,9
												Outig 170
												129.7 140.8 91.5 180.8 1142.4 184.8 123.6 170.3 195.6 195.6 195.6 195.7 169.5
												0.303 0.312 0.312 0.324 0.334 0.357 0.367 0.340 0.332 0.323 0.323 0.314 0.297
												701.8 940.4 979.6 1050.1 1112.8 1165.6 988.8 988.5 938.6 638.5
												Emission Rate (D) month (D) 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033
												PW Tons 12.0 16.7 16.3 16.3 10.3 9.8 9.6 6.7 9.7
												PA:
									,			Harrion Harrion 11.13 (Cas) 11.14 0.0163 11.45 0.0168 11.45 0.0168 11.40 0.0143 9.4 0.0080 9.4 0.0081 8.8 0.0083 8.9 0.0088 8.9 0.0088 8.9 0.0088
												Betons Betons (Gil) (Coal) (Coal) (Gil) (Coal) (Coal) (Gil) (Coal) (Coal
												Enissión Facion 12779824 0004 1.2779824 0002 1.25730457 0000 1.25780487 0001 1.2378044 0001 1.7638442 001 0.7638442 001 0.7625043 001 0.7825043 002 0.8150547
												Lead forms Lead form (Ccal) (C
												0.0029 0.0039 0.0039 0.0039 0.0040 0.0040 0.0040 0.0040 0.0042 0.0029 0.0029
												Wercury Mercury Coal) Mercury Coal) Mercury Coal) Mercury Coal) Mercury Coal) Mercury Coal) Mercury Coal
												Foundes Floring 0.39 0.50 0.53 0.53 0.54 0.54 0.54 0.52 0.52 0.52
												Acidions (coar) (coar) 0.27 0.36 0.37 0.41 0.41 0.49 0.49 0.49 0.49
												Acid to his control of the control o
												Trons 2 2.32 3.01 3.02 3.14 2 3.14 2 3.14 2 3.09 3.09 2.29 3.29 2.29 3.29 2.29 3.29 3.29 3.2
												on a distribution of the second of the secon
												# 10 d d d d d d d d d d d d d d d d d d
												\$100 miles 100 m
												QZoqie QQCs) QCs QCs QCs QCs QCs QCs QCs QCs

	Mar-05	Feb-05	Jan-05	Dec-04	Nov-04	Oct-04	Sep-04	Aug-04	Jul-04	Jun-04	May-04	Apr-04	Month
	35,78	246,67	275,69	289,02	272,74	273,69	260,37	264,11	265,72	251,19	257,525	253,10	Coal. Throughppo (tons)
													Fue (gail
	3797	14189	18059	19945	15067	10155	17082	23883	9633	726	9817	15308	COIL SS
	30				1100		90	210					S&MIOuta S&GOSS Excess Emilssions
								_	0.0	0 0.0	0 0.1	0.0	PM PM
					,						0.0		A SSAM
	98.	672.0	744.0	744.0	719.8	744.	719.5	743.8	744.0	720.0	744.0	720	Operation Hours
	8 7.93E+	0 5.52E+	0 6.04E+	0 6.22E+	8 5.94E	0 6.20E+	5 5.98E-	8 6.15E-	.0 6.25E	.0 6.03E+12		.0 5.95E	Inpo (coa
	11 5.29	12 1.97	12 2.50	+12 2.78	12 2.07	12 1.40	12 2.36	+12 3.27	0 6.25E+12 1.33E+09	+12 1.00E+0		+12 2.13	ingu H
											Φ	13E+09 (eat Su
											0.82 2		TO SU
											2515.2 12	- 1	let Ou
	4.9 0.372	5.8 0.379	9.2 0.370	8.8 0.367	2.1 0.364	8.2 0.374	9.7 0.360	1.9 0.356	6.8 0.339	7.6 0.334	121.6 0.342	55.4 0.371	llet 22 NOX
											1052.9		NOx to
	6	2	.4	0	œ	2	9	ω	ຣົ	-	9	.9	PALE (lb/r
	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0040	0.0040	0.0040	0.0040	0.0040	0.0040	mission Rate S
	1.2	8.3	9.1	9.3	8.9	9.3	12.0	12.3	12.5	12.1	12.3	11.9	PM Tons
į	1	7.6	8.3	8.6	8.2	8.6	11.0	11.3	11.5	11.1	11.3	11.0	PM10 Tons
	0	0	0	0	0		0	_	_	_	_		BE Emil
	.0079	1.0077).0075	0.0073	0.0072	0.0072	0.0107	3.0117	0.0120	0.0126	0.0121	0.0122	(coal)
	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Be tons
	00031	000213	000225	000225	000214	000224	000321	000359	000375	000379	0.0000373	000363	Init f
	0.00000	0.00000	0.00000	0,00000	0.00000	0,00000	0.00000	0.00000	0,00000	0,00000	0.000000	0.00000	Be tons (o
	_									Ö	_		L Emil
	552185	428208	250577	105082	077675	077675	453897	034537	249061	599440	1.0320228	360249	ad ssion r(coal)
	0.0002994	0.002049	0.002190	0.002207	0.002102	0.002195	0.002826	0.003085	0.003202	0.003196	0.0031765	0.003084	Lead tons
											5 0.0000033		Lead (
				_		-	_	_	-		~		one Ma
	0005 0.0	0036 0.0	.0041 0.0	.0043 0.0	.0040 0.0	.0040 0.0	.0038 0.0	.0039 0.0	0.0039 0.0	.0037 0.0	.0038 0.0	0.0037 0.	reury Ons V
	000000	000001	000001	000001	000001	000001	000001	2000002	000001	000000	0.0000001	000001	ercury ns (oil)
	0.07	0.49	0.54	0.57	0.54	0.54	0.51	0.52	0.52	0.49	0.51	0.50	Flourides
	0	. 0		. 0		0		0	. 0		[:]		Sulfurio A
		_	_	•).37		Su Acid Aci
	0.0001	0.0003	0,0004	0.0007	0.0003	0.0002	0.0004	0.0006	0.0003	0.0000	0.0002	0.0004	Hude d tons
	0.40	2.76	3.02	3.11	2.97	3.10	2.99	3,08	3.13	3.02	3.08	2.98	RS/RSC Tons
													Ozone (V
	0.08	0.53	0.59	0.62	0.59	0.59	0.56	0.57	0.57	0.54	0.55	0.54	70Cs 70Cs 70dl Oz
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.03	0.0	one (VOC oal EPRI)
	ŏ	ช	ಸ	ដ	ಸ	ಹ	ಜ	າສ	ຜ	ಜ	ය	z	Ozone Cons (o
	0.0004	0.0014	0.0018	0.0020	0.0015	0.0010	0.0017	0.0024	0.0010	0.0001	0.0010	0.0015	(VOCs)
	0.00001	0.0000	0.0000	0.0000	0.0000;	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	Czone VOCs) ione (oii EPRI)
	-	ω	4	4	ω	N	4	Oi	N	Ó	N	ω	

NOx rolling 12 month totals

	1.63					1. 2. C. C. T. L. S.			UNIT ONE							
					14 July 200	-									F. Maria	
											Difference from		100	Actual OFA	Discounted	1.0
			1							$\mathcal{M}_{\mathbf{q}}(\mathcal{A}_{\mathbf{q}}) = \mathcal{M}_{\mathbf{q}}(\mathcal{A}_{\mathbf{q}})$	Actuals				OFA Actuals	
12 month	Actual NOx		Operating				Restructured	Excluded	Non-OFA Predicted	Non-OFA Predicted	(Disalllowed	Discounted	Baseline	difference		PSD?
ending	Emissions	Heat Input	Hours	Inlet SO2 tons	Inlet SO2 rate	NOx rate	NOx Baseline	Emissions	NOx Rate	NOx tons	Add-back)	Actual Emissions	(adjusted)	from baseline	from Baseline	(>40ton)
Jun-04	13351	7.23E+13	8,676	33076	0.915	0.434	14481	216	0.376816246	13617	266	13402	14265	-1130	-864	N
Sep-04	13143	7.20E+13	8,675	32755	0.909	0.433	14458	194	0.376313197	13555	411	13361	14264	-1315	-903	N
Dec-04		7.25E+13	8,733	33127	0.913	0.434	14569	210	0.376652929	13661	451	13451	14359	-1359	-909	N
Mar-05	12092	6.73E+13	8,114	30879	0.918	0.434	13552.	212	0.377065194	12680	588	12468	13341	-1461	-872	N

. 1											A Comment of Contract of Contr					
	200				1000	1.0		ant in the second	UNIT TWO							
													1.0	Parada Sept. Control		
											D:0			Assual OFA	Discounted OFA	
				147 - 144	Effective				Non-OFA	V 054	Difference	D: 4.4		Emissions		
2 month	Actual NOx	Upot	Operating	THE RESERVE AND ADDRESS OF THE PARTY OF THE			Destruit des		Non-OFA		from Actuals			THE REST OF THE PARTY OF THE PA	Company and an area	nono
		40 Laborator 1 1 1				Representative		A property to the same of the			The state of the s		Baseline	difference	Difference from	
	Emissions			tons	SO2 rate		NOx Baseline	Emissions	Rate	tons	Add-back)	Emissions	(adjusted)	from baseline	Baseline	(>40to
Jun-04	11374	6.24E+13	7,92	1 27221	0.873	0.429	13019	627	0.373241217	11636	262	11009	12391	-1645	-1382	N
Sep-04	11193	6.36E+13	7,92	1 28369	0.893	0.431	13084	692	0.374895575	11915	722	11223	12392	-1891	-1169	N
Dec-04	10952	6.47E+13	7,92	1 29664	0.917	0.434	13164	772	0.376950638	12196	1244	11424	12392	-2212	-968	N
Mar-05	11383	6.94E+13	8,43	31805	0.917	0.434	14019	823	0.376974951	13073	1690	12250	13196	-2636	-946	N

				PLANT			
12 month ending		Excluded Emissions		Adjusted Actual Emissions	Baseline (adjusted)	Discounted Actuals Difference from Basteline	PSD? (>40ton)
Jun-04	24725	843	529	24411	26656	-2246	N
Sep-04	24336	886	1133	24583	26656	-2072	N
Dec-04	24162	982	1695	24874	26751	-1877	N
Mar-05	23475	1035	2278	24718	26537	-1818	N

							UNIT ONE					
						Representative					Discounted Actuals	
12 month	Actual SO2	Heat	Operating	AND COMPANY OF A STATE		BaselineSO2				Baseline	Difference	
ending	Emissions	Input	Hours	tons	Inlet SO2 rate	rate	SO2 Baseline	Emissions	Actual Emissions	(adjusted)	from Baseline	PSD? (>40ton)
Jun-04	1952	7.23E+13	8,676	33076	0.915	0.068	2284	295	1656	1989	-332	N
Sep-04	1951	7.20E+13	8,675	32755	0.909	0.068	2254	266	1685	1989	-303	N
Dec-04	1993	7.25E+13	8,733	33127	0.913	0.068	2289	288	1705	2002	-296	N
Mar-05	1813	6.73E+13	8,114	30879	0.918	0.069	2150	290	1523	1860	-337	N

						וואש	PTWO - F					
	7.00		200 May 1990 200 May 1990 200 May 1990					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Discounted	
12 month		Heat		The state of the state of	Effective 12mr	Representative BaselineSO2			Discounted Actual	Baseline	Actuals Difference from	
ending	Emissions	Input	Hours	tons	Inlet SO2 rate	rate	SO2 Baseline	Emissions	Emissions	(adjusted)	Baseline	(>40ton)
Jun-04	1664	6.24E+13	7,921	27221	0.873	0.059	1784	0	1664	1875	-211	N
Sep-04	1761	6.36E+13	7,921	28369	0.893	0.062	1865	0	1761	1875	-113	N
Dec-04	1856	6.47E+13	7,921	29664	0.917	0.065	1968	93	1762	1875	-112	N
Mar-05	2031	6.94E+13	8,435	31805	0.917	0.065	2097	101	1930	1996	-66	N

						PLANICS	100		San Caller of the Caller	
12 month ending	Actual S02 Emissions	Heat Input	Operating Hours	Intel S02 tons	Effective 12m; inlet 502 pate	Restructured SO2 Baseline		Baseline (adjusted)		PSD?
Jun-04	3616	1.35E+14	16,597	60297	0.896	4068.427	295	3863	-543	N
Sep-04	3712	1.36E+14	16,596	61123	0.902	4119,417	266	3863	-417	N
Dec-04	3849	1.37E+14	16,654	62790	0.915	4257.179	381	3877	-409	N
Mar-05	3844	1.37E+14	16,549	62684	0.918	4246.492	390	3856	-403	N

Stack PM rolling 12 month totals

	960				UNITO	NE			4.	
·				140						ig.
			Effective		in the		Adjusted		Actuals	
12 month	Actual PM		Emission	Operating	Restructured	Discounted		. Baseline⊸	Difference	PSD?
ending	Emissions	Heat Input		Hours	Baseline	Emissions	Emissions		from Baseline	(>25ton)
Jun-04	138	7.22E+13	0.00382	8,676	127	0	138	188	-50	N
Sep-04	144	7.20E+13	0.00400	8,675	133	0	144	188	-44	N
Dec-04	136	7.25E+13	0.00375	8,733	126	0	136	190	-54	N
Mar-05	119	6.72E+13	0.00354	8,114	111	0	119	176	-57	N

					TINU	WO				
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14年1月1日	NEW TOTAL		
			Effective				Adjusted		Actuals	The Labor.
12 month	Actual PM		= Emission	Operating	Restructured	Discounted	Adjusted	Baseline	Difference	PSD?
ending	Emissions	Heat Input	Rate	Hours	Baseline	_Emissions _	Emissions	(adjusted)	from Baseline	
Jun-04	145	6.23E+13	0.00464	7,921	141	41	104	100	4	N
Sep-04	165	6.35E+13	0.00520	7,921	158	58	107	100	8	N
Dec-04	151	6.47E+13	0.00466	7,921	. 141	42	109	100	9	N
Mar-05	148	6.93E+13	0.00427	8,435	138	32	116	106	10	N

		And the second second	PLANT.	a an a threaten	
12 month ending	Actual PM Emissions		Baseline (adjusted)	Actuals Difference From Baseline	≢PSD? (>25ton)
Jun-04	283	242	288	-46	N
Sep-04	309	251	288	-37	N
Dec-04	287	245	289	-44	N
Mar-05	267	235	282	-47	N

Stack PM10 rolling 12 month totals

					UNITO	VE .				
12 month ending	Actual PM10 Emissions	Heat Input	Effective Emission Rate		Restructured Baseline	Discounted Emissions	Adjusted Actual Emissions	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>15ton)
Jun-04	127	7.22E+13	0.00351	8,676	117	0	127	173	-46.3	N
Sep-04	133	7.20E+13	0.00368	8,675	123	0	133	173	-40.7	N
Dec-04	125	7.25E+13	0.00345	8,733	116	. 0	125	174	-49.4	N
Mar-05	110	6.72E+13	0.00326	8,114	102	0	110	162	-52.4	N

]					של דומט 💮	10				100
						10.89				
·	k a s						Adjusted	11.0	Actuals	
12 month	Actual PM10		Effective	Operating	Restructured	Discounted	Actual	Baseline	Difference from	PSD?
ending	Emissions	Heat Input	Emission Rate	. Hours	Baseline	Emissions	Emissions	(adjusted)	Baseline	(>15ton)
Jun-04	133	6.23E+13	0.00427	7,921	130	38	95	92	3.6	N
Sep-04	. 152	6.35E+13	0.00478	7,921	145	53	99	92	6.9	N
Dec-04	139	6.47E+13	0.00429	7,921	130	38	100	92	8.6	N
Mar-05	136	6.93E+13	0.00393	8,435	127	29	107	98	9.3	N

			GREANTES -	(Carpett Personal	
12 month ending	Actual PM Emissions			Actuals Difference Iron Baseline	PSDA
Jun-04	260	222	265	-43	N
Sep-04		231	265	-34	N
Dec-04	264	225	266	-41	N
Mar-05	246	217	260	-43	N

Ozone (Volatile Organic Compounds) rolling 12 month totals

			=UNIT ONE		
12 month	Actual VOC . Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>40ton)
Jun-04	6.9480	8,676	6.3226	0.6254	N
Sep-04	6.9333	8,675	6.3221	0.6112	N
Dec-04	7.0865	8,733	6.3643	0.7222	N
Mar-05	6.6132	8,114	5.9129	0.7003	N

		$x \in \mathcal{X} \setminus \mathcal{U}$	NITTWO		
12 month ending		Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>40ton)
Jun-04	5.9930	7,921	5.7405	0.2525	N
Sep-04	6.1171	7,921	5.7406	0.3765	Ν
Dec-04	6.3348	7,921	5.7406	0.5941	N
Mar-05	6.8391	8,435	6.1132	0.7259	. N

		a alalani		
12 month ending	Actual VOC Emissions	:Baseline: (adjusted)	Aduals Difference from Baseline	PSD? (>40km)
Jun-04	12.9410	12.0631	0.8779	N
Sep-04	13.0505	12.0627	0.9877	N ·
Dec-04	13.4213	12.1050	1.3163	N
Mar-05	13.4522	12.0261	1.4262	N

IP11_002459

Lead ro	olling 12 mc	inth totals		:	
	1.0	responsible services	UNIT ONE		
12 month ending	Actual Pb Emissions	Operating - Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>0.6ton)
Jun-04	0.0366	8,676	0.0519	-0.0154	. N
Sep-04	0.0373	8,675	0.0519	-0.0146	N.
Dec-04	0.0342	8,733	0.0523	-0.0180	N
Mar-05	0.0297	8 114	0.0486	-0.0189	N ·

			UNIT TWO	т предоставляющий предоставляю	
12 month ending	Actual Pb Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from 7 Baseline	PSD? (>0.6ton)
Jun-04	0.0368	7,921	0.0319	0.0050	N
Sep-04	0.0406	7,921	0.0319	0.0087	N
Dec-04	0.0362	7,921	0.0319	0.0044	N
Mar-05	0.0355	8,435	0.0339	0.0015	N

		. PLAI	VIP	
12 month ending	Actual Pb Emissions	Baseline (adjusted)	AGUES Difference from Baseline	
Jun-04	0.0734	0.0838	-0.0104	N
Sep-04	0.0780	0.0838	-0.0058	N
Dec-04	0.0705	0.0841	-0.0136	N
Mar-05	0.0651	0.0825	-0.0173	N

			22	4ton)				
			PSD?	(>0.0004t	Z	Z	z	z
		Actuals Difference	from	Baseline	-0.0002	-0.0002	-0.0002	-0.0002
. •	INITIONE		Baseline	adjusted)	0.0006	0.0006	0.0006	0.0006
month totals	m	A Carlo	Operating B	Hours (a	8,676	8,675	8,733	8,114
Beryllium rolling 12 month totals			Actual Be C	Emissions	0.0004	0.0004	0.0004	0.0003
Berylliu			12 month	ending	Jun-04	Sep-04	Dec-04	Mar-05

.1		12 month	ending	Jun-04	Sep-04	Dec-04	Mar-05
		Actual Be (Emissions	0.0005	0.0005	0.0004	0.0004
		Operating	Hours ::	7,921	7,921	7,921	8,435
NINIT TWO		Baseline Dil	(adjusted)	0.0003	0.0003	0.0003	0.0003
	Actuals	ference from	Baseline	0.0002	0.0002	0.0002	0.0001
		PSD?	(>0:0004ton)	z	z	z	Z

	PLAN		
	id.	Difference	AGES.
Actual Be	gaseilne .	TOTH:	(Strongliking)
Emissions	=(adjusted)=	Baseline	(E
0.0009	0.0009	0,0000	z
0.0010	0.0009	0.0001	z
0.0008	0.0009	-0.0001	z
0.0008	0.0009	-0.0001	z
	Actual Be Emissions 0.0009 0.0010 0.0008	Base (adjus 10 10 10 10 10 10 10 1	

Mercury rolling 12 month totals

	AUNIT ONE							
12 month ending	Actual Hg Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>0.1ton)			
Jun-04	0.0442	8,676	0.0419	0.0023	N			
Sep-04	0.0448	8,675	0.0419	0.0029	N			
Dec-04	0.0465	8,733	0.0422	0.0043	N			
Mar-05	0.0434	8,114	0.0392	0.0042	N			

		in the second	INIT TWO		
12 month ending	Actual Hg Emissions	Operating Hours	Baseline <i>a</i> (adjusted)	Actuals Difference from Baseline	PSD? (>0:1(en)
Jun-04	0.0380	7,921	0.0384	-0.0004	N
Sep-04		7,921	0.0384	0.0011	N
Dec-04	0.0415	7,921	0.0384	0.0032	N
Mar-05	0.0449	8,435	0.0409	0.0040	N

		PLAN		
12 month ending	Actual Hg/. Emissions	Baseline (adjusted)	Actuals Difference from Baseline	
Jun-04	0.0821	0.0803	0.0019	N
Sep-04	0.0842	0.0803	0.0040	N
Dec-04		0.0806	0.0075	N
Mar-05	0.0883	0.0801	0.0083	N

Flouride rolling 12 month totals

		and the state of	INIT ONE		25.25
12 month ending	Actual HF Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>3ton)
Jun-04	6.0527	8,676	5.5355	0.5172	N
Sep-04	6.0536	8,675	5.5350	0.5185	N
Dec-04	6.2080	8,733	5.5721	0.6360	N
Mar-05	5.7955	8,114	5.1768	0.6187	N

			UNIT TWO		
12 month ending	Actual HF Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>3ton)
Jun-04	5.2148	7,921	5.0671	0.1477	N
Sep-04		7,921	5.0673	0.2693	N
Dec-04		7,921	5.0673	0.4763	N
Mar-05	5.9888	8,435	5.3961	0.5927	N

		PLAN	Service States and	
12 month ending	Actual HF Emissions	Baseline (adjusted)	Actuals Difference from Baseline	PSID? (>Ston)
Jun-04	11.2675	10.6027	0.6648	N
Sep-04	11.3902	10.6024	0.7879	N
Dec-04		10.6394	1.1123	N
Mar-05	11.7844	10.5729	1.2114	N

Sulfuric Acid rolling 12 month totals

			UNIT ONE	Sept. Sept. 1	
12 month ending	Actual H2SO4 Emissions	Operating Hours	Baseline (adjusted)≁	Actuals Difference from Baseline	PSD? (>7ton)
Jun-04	4.5437	8,676	4.2861	0.2575	N
Sep-04	4.5130	8,675	4.2858	0.2273	N
Dec-04	4.5907	8,733	4.3144	0.2763	Ν
Mar-05	4.3343	8,114	4.0084	0.3259	N

	UNITITWO					
12 month ending	Actual H2SO4 Emissions	Operating Hours	Baseline., (adjusted)	Actuals Difference from Baseline	PSD? (>7ton)	
Jun-04	3.9574	7,921	3.8839	0.0736	N	
Sep-04	4.0194	7,921	3.8840	0.1354	N	
Dec-04	4.1396	7,921	3.8840	0.2556	N	
Mar-05	4.4888	8,435	4.1360	0.3528	N	

		PLAN	To see selection	
12 month ending	Actual H2S04 Emissions	Baseline (adjusted)	Actuals Difference from Baseline	PSD7 (>7(on)
Jun-04	8.5011	8.1700	0.3311	N
Sep-04		8.1698	0.3626	N
Dec-04	8.7303	8.1984	0.5318	N
Mar-05	8.8231	8.1444	0.6787	N

Total Reduced Sulfur / Reduced Sulfur Compounds (TRS/RSC

			UNIT ONE		
12 month ending	Actual TRS/RSC Emissions	Operating - Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>10ton)
Jun-04	36.1377	8,676	33.3693	2.7684	N
Sep-04	36.0197	8,675	33.3664	` 2.6533	N
Dec-04	36.2690	8,733	33.5895	2.6795	Ν
Mar-05	33.6286	8,114	31.2068	2.4218	N

]			UNIT TWO		
12 month ending	Actual TRS/RSC Emissions	Operating Hours	Baseline (adjusted)	Actuals Difference from Baseline	PSD? (>10ton)
Jun-04	31,1762	7,921	30.3210	0.8552	N
Sep-04	31.7810	7,921	30.3220	1.4590	N
Dec-04	32.3532	7,921	30.3220	2.0312	N
Mar-05	34.6782	8,435	32.2896	2.3886	N

		STEEL STEEL STEEL	Virta de la companya	
12 month ending	Actual - TRS/RSC Emissions	. Baseline (adjusted)	Avatrals Diference from Basaline	PSD? (>10ton)
Jun-04	67.3139	63.6903	3.6236	N
Sep-04	67.8007	63.6884	4.1123	· N
Dec-04	68.6221	63.9114	4.7107	N
Mar-05	68.3068	63.4964	4.8104	N

BASELINE WEPCO DATA

WEPCO Compliance Baseline Period:

March 1, 2000 to February 28, 2002

		UNIT ONE				UNIT TWO	
Parameter / Emissions	Total	per hour rate	lb/mmbtu		Total	per hour rate	lb/mmbtu
Heat Input (btu)	1.25E+14	7692321075			1.27E+14	7656091981	
Operating Hours	16249.5				16556		
Coal Throughput (tons)	5,252,644	323.2495769			5,327,858	321.808287	
Fuel Oil Throughput (gal	562,687	34.62795778			447779	27.04632762	
NOx (tons)	26717.48895	1.644203757	0.427492233		25900.53434	1.564419808	0.408673201
SO2 (tons)	3724.69	0.229218542	0.059596717		3918.35	0.236672711	0.061825984
Stack PM (tons)	352.6245813	0.021700642	0.005642157		208.5277666	0.012595299	0.003290268
Stack PM10 (tons)	324.4146148	0.019964591	0.005190785		191.8455452		
Beryllium (tons)	0.00111424	6.85707E-08	1.78284E-08		0.000610932	3.6901E-08	9.63963E-09
Lead (tons)	0.097237787	5.98405E-06	1.55585E-06	•	0.066625055	4.02422E-06	1.05125E-06
Mercury (tons)	0.078480844	4.82974E-06	1.25573E-06		0.080212976	4.84495E-06	1.26565E-06
Flourides (tons)	10.37	0.000638028	0.000165887		10.59	0.00063973	0.000167117
Sulfuric Acid (tons)	8.03	0.000494023	0.000128446		8.12	0.00049034	0.000128092
TRS/RSC (tons)	62.50	0.003846161	0.001		63.38	0.003828046	0.001
Ozone (VOCs) (tons)	11.84	0.000728749	0.000189474	,	12.00	0.000724738	0.000189323

INTERMOUNTAIN GENERATING STATION EMISSION FACTOR FACT SHEET

				PM Emission	n Rate (lb/m	ımbtu) and	Coal Trace	Concentration	ns (ppm)
SOURCE	EMISSION FACTOR	UNITS / Formulae	Source / Table	2000	2001	2002	2003	2004	2005
Stack, PM EF, Unit 1	<u>T</u>	lb/mmbtu	Stack Test	0.0049	0.0073	0.0030	0.0033	0.0040	0.0030
Stack, PM EF, Unit 2		lb/mmbtu	Stack Test	0.0034	0.0037	0.0024	0.0032	0.0052	0.0033
				•					
Stack, VOC (coal) Cummulative AP42	0.004292	lbs/ton	AP-42 1.1-13						
Stack, VOC (coal) Cumulative EPRI	8.2	lb/10^12 btu	EPRI Trace SubstancesReport	[
Stack, VOC (oil) Cummulative AP42	0.2	lb/1000gal	AP-42 1.1-13						
Stack, VOC (oil) Cummulative EPRI	31	lb/10^12 btu	EPRI Trace SubstancesReport	j					
Stack, Be (coal)	1.2*(C/A*PM)^1.1	lb/10^12 btu	AP-42 1.1-15	0.38	0.39	0.41	0.41	0.40	0.40
Stack, Pb (coal)	3.4*(C/A*PM)^0.80	lb/10^12 btu	AP-42 1.1-15	7.1	6.6	6.2	6	6	6
Stack, Hg (coal) Control Efficiency	76.9	%	Source Testing	0.061	0.068	0.065	0.06	0.06	0.06 66
Stack, F (coal) Control Efficiency	97	%	EPRI Trace SubstancesReport	63	68	68	65	66	66
Stack, Be (0il)	0.2	lb/10^12 btu	EPRI Trace SubstancesReport						
Stack, Be (oil) Control Efficiency	30	%	EPRI Trace SubstancesReport						•
Stack, Pb (oil)	7	lb/10^12 btu	EPRI Trace SubstancesReport						•
Stack, Pb (oil) Control Efficiency	30	%	EPRI Trace SubstancesReport						
Stack, Hg (oil)	0.46	lb/10^12 btu	EPRI Trace SubstancesReport						. •
Stack, Hg (Control Efficiency)	76.9	%	Source Testing					2	
Stack, H2SO4 (coal)	6.45986	lb/ton	Source Testing						
Stack, H2SO4 Control Efficiency	92.02	%	Source Testing					•	, , , , , , , , , , , , , , , , , , ,
Stack, H2SO4 (oil)	0.00245	lb/gal	So Co Paper						. \$
Stack, TRS/RSC	0.001	lb/mmbtu	Eng. Calc.						
Stack SS&M (PM10)	0.42	lbs/ton	AP42 T1.1-6						:
Stack SS&M (PM)	0.6	lbs/ton	AP42 T1.1-6						
Stack SS&M (PM10)	71	%	AP42 T1.1-6						'
								•	
NOx relationship to Fuel Quality (Baseline)	0.1091x + 0.3341	lb/mmbtu	Plant NOx Basis Worksheet						
NOx relationship to Fuel Quality (No OFA)	0.0848x + 0.2992	lb/mmbtu	Plant NOx Basis Worksheet						
U1 SO2 relationship to Fuel Quality	0.0817x ²	lb/mmbtu	U1 SO2 Basis Worksheet						
U2 SO2 relationship to Fuel Quality	0.0728x ²	lb/mmbtu	U2 SO2 Basis Worksheet						

INTERMOUNTAIN GENERATING STATION Analysis Protocol

Refer to the following groups for description of general column headings in each WEPCO worksheet.

This protocol overview is provided to ensure consistency and validation in the following areas:

1. - Input Data
2. - Production & Emission Calculations
3. - WEPCO Analysis: Actuals to Actuals comparison, and adjusting for increases not attributable to the modifications.

Data Used	Data Sources
Fuel Throughput - Coal	Calibrated feeders located at each mill. Adjusted annually based upon coal stockpile inventory analysis.
Fuel Throughput - Fuel Oil	Flowmeters for each unit.
Fuel Quality - Coal HHV	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Coal ASH	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Coal Sulfur	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Coal Trace Elements	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Oil HHV	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Oil Density	ASTM Sampling and Laboratory Analysis - As fired
Fuel Quality - Oil Sulfur	ASTM Sampling and Laboratory Analysis - As fired
Startup, Shutdown, & Malfunction Emissions	Obtained from excess emission reports made to UDAQ, utilizing AP-42 factors for uncontrolled sources.
Operating Hours	Boiler operating data obtained from 40 CFR Part 75 CEMS EDR
Inlet Sulfur Rate	Actual CEM measurement taken at scrubber inlet pursuant to 40 CFR Part 60 requirements
Outlet Sulfur Emissions	Actual CEM measurement taken at stack pursuant to both 40 CFR Part 60 and Part 75 requirements
NOx Rate	Actual CEM measurement taken at stack pursuant to both 40 CFR Part 60 and Part 75 requirements
PM Emission Rate	From annual 40 CFR Part 60 App.A. Method 5 stack testing

Production / Emission Calculations	Basis
SS&M PM and PM10 Excess Emissions	Utilizing AP-42 & SS&M emissions (in pounds), converted to tons
Heat Input	Multiplies fuel quality (HHV) by throughput, and conversion factors
Inlet Sulfur Tonnage	Multiples inlet sulfur rate by heat input, and conversion factors
NOx emissions in tons	Multiplies NOx emission rate by heat input, and conversion factors
PM emissions in tons	Multiplies PM emission rate by heat input, and conversion factors
PM10 emissions in tons	Multiplies PM10 emission rate by heat input, and conversion factors
Be emission factor	Calculated with AP-42 (coal) or EPRI's Trace Substance Report (oil), using trace concentration and ash content.
Be emissions	Utilizes Be emission factors and heat input, and conversion factors
Pb emission factor	Calculated with AP-42 (coal) or EPRI's Trace Substance Report (oil), using trace concentration and ash content.
Pb emissions	Utilizes Pb emission factors and heat input, and conversion factors
Hg emissions	Utilizes control efficiencies determined by stack testing
Flourides/HF emissions	Calculated utilizing EPRI's Trace Substance Report and trace concentration, and conversion factors
H2SO4 emissions	Utilizes control efficiencies determined by stack testing, and conversion rates based upon So. Co.'s paper
TRS/RSC sulfur compound emissions	Uses a factor derived on the basis of AP-42 Table 1.1-3, Footnote (b).
VOC's	Using a summation of individual VOC specific emission factors from both AP-42 and EPRI's Trace Substance Report to resolve a single cummulative EF, mulitplying either throughput or heat input, and conversion factors.

WEPCO Analysis	Description
Actual emissions	Summation of 12 rolling months of emissions calculated on the PODUCTION DATA worksheet.
Heat Input	Summation of 12 rolling months of heat input calculated on the PRODUCTION DATA worksheet.
Operating hours	Summation of 12 rolling months of hours calculated on the PRODUCTION DATA worksheet.
Inlet SO2 tonnage	Summation of 12 rolling SO2 tons to the scrubber inlet calculated on the PRODUCTION DATA worksheet.
Effective 12 month SO2 Inlet rate	Derived from dividing 12 month inlet tonnage by 12 month heat rate.
Representative rate	Represents rate predicted to have occurred during baseline if this period's fuel was utilized. Based upon historical operating and emissions data.
Restructured Baseline	Represents predicted emissions that would have occurred during baseline period at the representative rate, using the baseline period heat input.
Excluded emissions	Difference between the actual baseline and the restructured baseline, indicating non-mod emission increases that could be accommodated during baseline period.
Non-OFA Predicted Rate	Expected emssion rate without the benefit of OFA, based upon historical operating and emissions data.
Non-OFA Predicted emissions	Expected emssions without the benefit of OFA, multiplying predicted rate by actual heat input.
Non-OFA Emission difference from actual	This is the calculated benefit from OFA which must be discounted to show WEPCO compliance for the Dense Pack Project.
Discounted actual emissions	Emissions to which the WEPCO test applies, which discounts any OFA benefit, and excludes increases not attributible to the modification.
Baseline (adjusted)	The basis to which the WEPCO test compares, utilizing the baseline emission rate, adjusted to hours of operation.
Discounted Difference	The difference between WEPCO period emissions and Baseline period emissions.
PSD?	An IF statement argument that compares the difference against the PSD significance level.